Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Intervalo de año de publicación
2.
Sci Rep ; 13(1): 11137, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37429940

RESUMEN

Coronary artery tortuosity is usually an undetected condition in patients undergoing coronary angiography. This condition requires a longer examination by the specialist to be detected. Yet, detailed knowledge of the morphology of coronary arteries is essential for planning any interventional treatment, such as stenting. We aimed to analyze coronary artery tortuosity in coronary angiography with artificial intelligence techniques to develop an algorithm capable of automatically detecting this condition in patients. This work uses deep learning techniques, in particular, convolutional neural networks, to classify patients into tortuous or non-tortuous based on their coronary angiography. The developed model was trained both on left (Spider) and right (45°/0°) coronary angiographies following a fivefold cross-validation procedure. A total of 658 coronary angiographies were included. Experimental results demonstrated satisfactory performance of our image-based tortuosity detection system, with a test accuracy of (87 ± 6)%. The deep learning model had a mean area under the curve of 0.96 ± 0.03 over the test sets. The sensitivity, specificity, positive predictive values, and negative predictive values of the model for detecting coronary artery tortuosity were (87 ± 10)%, (88 ± 10)%, (89 ± 8)%, and (88 ± 9)%, respectively. Deep learning convolutional neural networks were found to have comparable sensitivity and specificity with independent experts' radiological visual examination for detecting coronary artery tortuosity for a conservative threshold of 0.5. These findings have promising applications in the field of cardiology and medical imaging.


Asunto(s)
Vasos Coronarios , Aprendizaje Profundo , Angiografía Coronaria , Vasos Coronarios/diagnóstico por imagen , Inteligencia Artificial , Proyectos de Investigación
3.
Brain Behav Immun ; 108: 309-327, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36535610

RESUMEN

Numerous studies have emphasised the importance of the gut microbiota during early life and its role in modulating neurodevelopment and behaviour. Epidemiological studies have shown that early-life antibiotic exposure can increase an individual's risk of developing immune and metabolic diseases. Moreover, preclinical studies have shown that long-term antibiotic-induced microbial disruption in early life can have enduring effects on physiology, brain function and behaviour. However, these studies have not investigated the impact of targeted antibiotic-induced microbiota depletion during critical developmental windows and how this may be related to neurodevelopmental outcomes. Here, we addressed this gap by administering a broad-spectrum oral antibiotic cocktail (ampicillin, gentamicin, vancomycin, and imipenem) to mice during one of three putative critical windows: the postnatal (PN; P2-9), pre-weaning (PreWean; P12-18), or post-weaning (Wean; P21-27) developmental periods and assessed the effects on physiology and behaviour in later life. Our results demonstrate that targeted microbiota disruption during early life has enduring effects into adolescence on the structure and function of the caecal microbiome, especially for antibiotic exposure during the weaning period. Further, we show that microbial disruption in early life selectively alters circulating immune cells and modifies neurophysiology in adolescence, including altered myelin-related gene expression in the prefrontal cortex and altered microglial morphology in the basolateral amygdala. We also observed sex and time-dependent effects of microbiota depletion on anxiety-related behavioural outcomes in adolescence and adulthood. Antibiotic-induced microbial disruption had limited and subtle effects on social behaviour and did not have any significant effects on depressive-like behaviour, short-term working, or recognition memory. Overall, this study highlights the importance of the gut microbiota during critical windows of development and the subtle but long-term effects that microbiota-targeted perturbations can have on brain physiology and behaviour.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Ratones , Antibacterianos/farmacología , Conducta Social , Microbioma Gastrointestinal/fisiología , Ansiedad
4.
Neurobiol Stress ; 21: 100494, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36532376

RESUMEN

Psychiatric disorders including major depression are twice as prevalent in women compared to men. This sex difference in prevalence only emerges after the onset of puberty, suggesting that puberty may be a sensitive period during which sex-associated vulnerability to stress-related depression might become established. Thus, this study investigated whether stress occurring specifically during the pubertal window of adolescence may be responsible for this sex difference in depression vulnerability. Male and female rats were exposed to a three-day stress protocol during puberty (postnatal days 35-37 in females, 45-47 in males) and underwent behavioral tests in adolescence or adulthood measuring anhedonia, anxiety-like behavior, locomotor activity and antidepressant-like behavior. Brainstem and striatum tissue were collected from a separate cohort of behavioral test-naïve rats in adolescence or adulthood to quantify the effect of pubertal stress on monoamine neurotransmitters. Pubertal stress increased immobility behavior in the forced swim test in both sexes in adolescence and adulthood. In adolescence, pubertal stress altered escape-oriented behaviors in a sex-specific manner: decreasing climbing in males but not females and decreasing swimming in females but not males. Pubertal stress decreased adolescent brainstem noradrenaline specifically in females and had opposing effects in adolescent males and females on brainstem serotonin turnover. Pubertal stress induced anhedonia in the saccharin preference test in adult males but not females, an effect paralleled by a male-specific decrease in striatal dopamine turnover. Pubertal stress did not significantly impact anxiety-like behavior or locomotor activity in any sex at either age. Taken together, these data suggest that although pubertal stress did not preferentially increase female vulnerability to depressive-like behaviors compared to males, stress during puberty exerts sex-specific effects on depressive-like behavior and anhedonia, possibly through discrete neurotransmitter systems.

7.
Curr Opin Pharmacol ; 48: 137-145, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31610413

RESUMEN

The gut-brain axis is a bidirectional communication system between the central nervous system and the gastrointestinal tract, in which serotonin (5-HT) functions as a key neurotransmitter. Recent research has increasingly concentrated on tryptophan, the precursor to 5-HT and on the microbial regulation of tryptophan metabolism, with an emphasis on host-microbe control over kynurenine pathway metabolism and microbial-specific pathways that generate bioactive tryptophan metabolites. Here, we critically assess recent progress made towards a mechanistic understanding of the microbial regulation of tryptophan metabolism and microbiota-gut-brain axis homeostasis highlighting the role tryptophan metabolism plays in preclinical and clinical neuroscience and in the challenge to improve our understanding of how perturbed tryptophan metabolism contributes to stress-related psychiatric disorders.


Asunto(s)
Encéfalo/metabolismo , Microbioma Gastrointestinal , Triptófano/metabolismo , Animales , Humanos , Indoles/metabolismo , Quinurenina/metabolismo , Trastornos Mentales/metabolismo , Trastornos Mentales/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...